| |||||||||||||

Newsletters
The concept of "block scheduling or "flex scheduling" (looked at by homeschool educators as a way to speed-up the process by going through the books at a faster pace) while not advocated by John Saxon or the author, can be successfully utilized for these Saxon textbooks, if the procedures discussed in this information booklet are followed. John Saxon believed that children learn more efficiently and effectively when they are exposed to mathematical concepts in small, easily understandable concepts. This is what John referred to as "incremental learning" or "incremental development." We also believe, and research supports this view, that new concepts and skills should be reviewed continually. However, if you must use block scheduling – while teaching from any one of the three textbooks mentioned above, we recommend you follow these guidelines. The author of this article is a retired high school math teacher who has taught the Saxon textbooks from Algebra Â˝ through Calculus for more than a decade. The concepts reflected here were implemented at a local university over thirty years ago when incoming freshman with low ACT scores were required to take a non-credit introductory algebra course to prepare them for college algebra. The author (as an adjunct professor) used the Saxon Algebra 2, (3 Successful implementation of these procedures will allow a student who – for whatever reason -needs to complete one of the three courses listed above in a single semester, rather than a full nine month school year. As with any new procedures, there are always variations that may or may not work; however, it is recommended these procedures not be altered until you have followed them for at least one full academic semester. There are 123 lessons in the Algebra Â˝ textbook, 120 lessons in the Algebra 1 textbook, and 129 lessons in the Algebra 2 textbook. So, basically, you need to commit a minimal time span of at least six months to acquire a minimum of 75 useable days. Using three days per week to accomplish six lessons and one test per week, you could easily cover the 129 lessons in the Algebra 2 textbook. What we have not covered is what to do with the student who, after going through the six months' Block Scheduling course ends up with a " If questions regarding these instructions or situations arise that create conflict with these procedures, or if additional information is needed, please feel free to call the author at
Remember your math teacher's 50/50 grading method that allowed 50% of 100 = 50 for homework and 50% of 50 = 25 for the test grade giving the lazy guy or gal in the class a final grade of "75." Earning for them a nice "C" because they had utilized the "
(A recommended way to get done what is needed)
**APPENDIX A:**DAILY ASSIGNMENT COVER SHEET**APPENDIX B:**ASSIGNMENT REVIEW SHEET
I will get out the May Newsletter in a couple of days as soon as I resolve the following dilemma. Hopefully you have not been involved in sending us an email only to not receive either a reply or a telephone call. We have switched internet carriers and no longer can send or receive email from suddenlinkmail.com or suddenlink.com. Without warning they just stopped our email several days after the transfer. Any of the following email addresses will get to me or to AJ Publishers. For email directed for Art Reed, use one of the following: For email directed to the company AJ Publishers LLC, use one of the following:
I do apologize for any inconvenience this may have caused any of you. Please give me a call if you need a reply to an errant email you have sent in the last several days and have not yet received an answer Art Reed (1-580-234-0064)
Because of the cumulative nature of the Saxon mathematics textbook, a student entering a Saxon classroom from a non-Saxon environment will encounter difficulty regardless of his academic ability. It is this very cumulativeness, coupled with the incremental development of the Saxon textbook that will assist the student in regaining their academic level of performance. While it is an initial shock to the student and their parent(s), regardless of their academic ability, it is possible to overcome this initial shock if incoming students and their parents will sit down and agree to several policies and procedures based upon the following conditions as they apply to each student. 1. It will take three to four weeks or more for any student to reach his academic expectations regardless of his academic abilities. Students who arrive new to the Saxon methodology generally fall into one of three categories: A valid "A" or "B" math student who has mastered the prerequisites for the course will take about three to four weeks to assimilate to the weekly tests and the cumulative nature of the Saxon textbook. Inform the student that initial test scores may be a bit lower than expected. However later test scores that will undoubtedly be higher, will replace these lower test scores. This will resolve the problem before the end of the nine-week grading period. This will not solve the problem if the student is not really an "A" or "B" math student (e.g. his grades were based on applying a fifty percent notebook or fifty percent homework grades, etc.)__Exceptional Students:__Students who arrive with a low "A" or a low "B" average will experience a great deal more difficulty and will take almost an entire nine week period to assimilate to the Saxon methodology. Again, an initial conference with the student is essential.__Average Students:__Students who arrive with a "C" grade should be placed in the last part of the previous textbook (e.g. if the students came from the algebra 2 course, they should be placed in the last part of the Saxon algebra 1 class). To enable them to receive credit for this semester, enter algebra 1 (w/geometry) or Intro to algebra 2 on their transcripts to differentiate from the algebra 1 course they completed in the previous non-Saxon textbook. The Saxon algebra 1 textbook, unlike other algebra 1 textbooks, contains geometry and the later part of the textbook prepares the students for algebra 2, so either entry would be an accurate description. Without exception, students who received a low "C" or "D" grade in their previous math textbook should repeat whatever the course was, only now using the Saxon textbook.__Below Average Students:__ Upon successful completion, their transcript could either reflect the same "introductory algebra 1" or "introductory algebra 2" course or use "algebra 1 (w/geometry)" or algebra 2 (w/geometry), etc.
Setting them back with this review process gives them the opportunity to absorb the algebra and geometry at an easier level. Use the entries "introduction" and "w/geometry" on the transcripts so they can honestly receive credit for something they have not previously encountered.
And you and he both feel it would be beneficial to switch to the Saxon Algebra 2, 3rd Ed textbook. After three tests of 45 and 50, and 45, it is apparent that the student is not able to handle the material. You recommend the student be assigned to the Saxon algebra 1, 3rd Ed textbook and complete the Algebra 1 course. Depending on the student's latter test scores, his transcript would either reflect the Algebra 1 w/Geometry or the Introduction to Algebra 2. Assume the student's final five or so test scores are low "C"s" (70-75) the students transcript could reflect a "C" for an Intro to Algebra 2 course and they would repeat the algebra course the next year and their transcript would be annotated to reflect Algebra 2 (w/geometry). Recall that 3rd Ed textbook qualifies as an Honors Course.
It has been more than thirty years since I retired from teaching high school math at a rural high school in North Enid, Oklahoma. I can still remember the talk I gave my students their first day of class. I explained to them that the course was relatively easy if they did all of their daily practice work "known as homework" every day. It was easy to bring sports into the equation as I then told them that if they did not want to practice their putting on a daily basis â€“ don't expect to compete in any golf tournaments. If you don't want to take daily batting practice don't gripe about your low batting average. And if you do not do all of the problems in the daily assignment don't gripe when you start failing the weekly tests. I went on to explain to them that I had probably heard every excuse used by a student to explain why they were starting to fail - or were already failing â€“ a Saxon Math course. In this case my math class. Then I told them to not take any notes as I would provide each of them with a copy of these excuses known as Magic Homework. I went on to explain that I would also give them an extra copy to give their parents so when their grade began falling to a "C" or lower they could simply tell their parents it was because of reason 1, 2 or 3.
Think back to your days in high school and your algebra classes. Do you recall having your math teacher hand out a review sheet a few days before the big test? So what did you do with this review sheet? Right! You memorized it knowing that most of the questions would appear on the test in some form or other. We are the only industrialized nation in the world that I know of where parents proudly announce
I still see students in the local public school receiving a passing math grade using the "review sheet" technique, even though their test grades never get above a sixty. How can this happen? Easy! The student's grades are based upon a grading system that ensures success even though the student cannot pass a single test (unless you consider a sixty a passing grade). Many students' overall average grades are computed based upon fifty percent of their grade coming from the homework (easily copied by them) and another fifty percent determined from their test scores (following the review sheet). So the student who receives hundreds on the daily homework grades and fifties or sixties on the tests is cruising along with an overall grade average of a high "C" or a low "B." Yet, that student cannot explain half of the material in the book. I have often explained to parents of students who were struggling in my math classes that their struggle was akin to the honey bee struggling its way through the wax seal of the comb. It is that struggle that strengthens the bee's wings and enables it to immediately fly upon its exit from the hive. Cut the wax away for the young bee and it will die because its wings are too weak to allow it to fly. Yes, there is a difference between struggling and frustration! The home educator as well as the classroom teacher must be ever vigilant to recognize the difference. While we all would like the student to master the new concept on the day it is introduced, that does not always happen. Not every math student completely understands every math concept on the day it is introduced. It is because of this that John Saxon developed his incremental approach to mathematics. When John's incremental development is coupled with a constant review of these concepts, "mastery" occurs.
Mastery occurs through a process referred to by Dr. Benjamin Bloom as "automaticity." The term was coined by Dr. Bloom, of "Bloom's Taxonomy," while at the University of Chicago in the mid 1950's. He described this phenomenon as the ability of the human mind to accomplish two things simultaneously so long as one of them was over-learned (or mastered). The two critical components for mastery are . timeAutomaticity is another way to describe the placing of information or data into long term memory. The process requires that its two componentsâ€”repetition over timeâ€”be used simultaneously. It is this process in John Saxon's math books that creates the proper atmosphere for mastery of the math concepts. Violating either one of the two components negates the process. In other words, you cannot speed up the process by taking two lessons a day or doing just the odd or even numbered problems in each lesson. Trying to take shortcuts with mathematics would be like trying to save meal preparation time every day. Why not just eat all the meals on weekends and save the valuable time spent preparing meals Monday through Friday. Just as your body will not permit this "short-cut," your mind will not allow mastery of material squeezed into a short time frame for the sake of speeding up the process by reducing the amount of time spent on the individual math concepts. In a single school year of nine months, the student using John Saxon's math books will have taken more than twenty-five weekly tests. Since all the tests are cumulative in content, passing these tests with a minimum grade of "80" reflects "mastery" of the required concepts - not just memory!
While a student may periodically struggle with an individual test or two throughout the entire range of the tests, it is not their test "average" that tells how prepared they are for the next level math course, nor is it the individual test scores (good or bad) they received on the early tests that matter. Students who receive individual test scores of 80 or higherâ€”first time testedâ€”on their last five tests in any of John Saxon's math books are well prepared for success in the next level math course. I strongly recommend that you not tell the students of this until they reach the fifth test of the last five tests. Believe me, even the best of students will never really apply themselves to the first 25 or so tests thinking that they do not really count. By the time they reach the last five tests - if they even do - it will be too late as mastery has not taken hold. They will be lucky to even reach test 25 having not really applied themselves on the first 10 or so tests.
Homeschool educators are constantly faced with the dilemma of deciding whether or not their son or daughter needs to take a separate high school geometry course because some academic institution wants to see geometry on the high school transcript. Or, because the publishers offer it as a separate math textbook in their curriculum — implying it is to be taken as a separate course. Remembering, of course, that selling three different math textbooks books brings in more revenue than selling just two different math textbooks will. John Saxon's unique methodology of combining algebra in the geometric plane and geometry in the algebraic plane all in the same math textbook had solved that dilemma facing home school educators for these past twenty-five years. However, unknown to John, this same problem had been addressed over a hundred years earlier at the University of Chicago. Knowledge of this information came to me by way of a gift from my wife and her two sisters. Since 2003, after their mom and dad had passed away, my wife and her sisters had been going through some fifty years of papers and books accumulated by their parents and stored in the attic and basement of the house they all grew up in. When asked by friends why it was taking them so long, one of the daughters replied Among some of the treasures they found in the basement were letters to their great-grandfather written by a fellow soldier while both were on active duty in the Union Army. One of these letters was written to their great-grandfather while his friend was assigned to "Picket Duty" on the "Picket Line." His fellow Union Soldier and friend was describing to his friend (their great-grandfather) the dreary rainy day he was experiencing. He wrote that he thought it was much more dangerous being on "Picket Duty" than being on the front lines, as the "Rebels" were always sneaking up and shooting at them from out of nowhere. The treasure they found for me was an old math book that their father had used while a sophomore in high school in 1917. The book is titled The authors of the book were professors of mathematics and astronomy at the University of Chicago, and they addressed the problem facing high school students in their era. Students who had just barely grasped the concepts of the algebra 1 text, only to be thrown into a non-algebraic geometry textbook and then, a year or more later being asked to grasp the more complicated concepts of an algebra 2 textbook. The book they had written contained algebraic concepts combined with geometry. It was designed as a supplement to a geometry textbook so the students would continue to use algebraic concepts and not forget them. John never mentioned these authors â€” or the book â€” so I can only assume he never knew it existed. For if he had, I feel certain that it would have been one more shining light for him to shine in the faces of the high-minded academicians that he â€” as did these authors â€” thought were wreaking havoc with mathematics in the secondary schools. In the preface of their textbook, the professors had written:
So, should you blame the publishers for publishing a separate geometry textbook? Or is it the fault of misguided high-minded academicians who — after more than a hundred years — still demand a separate geometry text from the publishers? I am not sure, but thankfully, this decision need not yet face the homeschool educators using John Saxon's math books for the original Homeschool third editions of John Saxon's Algebra one half, Algebra one and Algebra two textbooks still contain geometry as well as algebra — as does the advanced mathematics textbook. In fact, John introduces some basic algebraic and geometric concepts as early as the sixth grade in the second and third editions of his sixth grade Math 76 book. Any home school student — using John Saxon's Homeschool math textbooks — who successfully completes Algebra one, (2 When home school educators tell me they are confused because the school website offers different materials than what is offered to them on the Homeschool website, I remind them that - unless they want to purchase a hardback version of their soft back textbook - they do not need anything being offered on the Saxon school website. In fact, they are getting a better curriculum by staying on the Homeschool website. You can still purchase the original versions of John Saxon's math textbooks that he intended be used to develop "mastery" as recommended by the University of Chicago mathematics professors over a hundred years ago. Because many of you do not have a copy of my book, I have reproduced that list from page 15 of the book so you can see what editions of John Saxon's original math books are still good whether acquired used or new. These editions will easily remain excellent math textbooks for several more decades.
Over the past forty-some years, I have noticed that parents, students, and educators I have spoken to, either strongly like or - just as strongly - dislike John Saxon's math books. During my workshops at home school conventions, I was often asked the question about why this paradigm exists. Or, as one home school educator put it, "Why is there this Love - Hate relationship with Saxon math books?" It is easy to understand why educators like John's math books. They offer continuous review while presenting challenging concepts in increments rather than overwhelming the student with the entire process in a single lesson. They allow for mastery of the fundamentals of mathematics. More than forty years ago, in an interview with William F. Buckley on the FIRING LINE in 1983, John Saxon responded to educators who were labeling his books as "blind, mindless drill." He accused them of misusing the word "drill." John reminded the listeners that:
John went on to explain that
As John would often say,
It is my belief that, Just what is it that creates this strong dislike of John Saxon's math books? During these past forty-some years I have observed there are several general reasons that explain most of this strong dislike. Any one of these - or a combination of several - will create a situation that discourages or frustrates the student and eventually turns both the parent and the student against the Saxon math books. Here are several of those reasons:
Every time I have encountered this situation, I have students take the on-line Saxon Algebra 1 placement test - and without exception, these students have failed that test. That failure tends to confuse the parents when I tell them the test the student just failed was the last test in the Saxon Pre-Algebra textbook. Does this tell you something? This same entry level problem can occur when switching to Saxon at any level in the Saxon math series from Math 54 through the upper level algebra courses; however, the curriculum shock is less dynamic and discouraging when the switch is made after moving from a fifth grade math curriculum into the Saxon sixth grade Math 76 book.
But when you start with a first edition of the Math 54 book in the fourth grade and then move to a second or third edition of Math 65 for the fifth grade; or you move from a first or second edition of the sixth grade Math 76 book to a second or third edition of the seventh grade Math 87 book, you are subjecting the students to a frustrating challenge which in some cases does not allow them to make up the gap they encounter when they move from an academically weaker text to an academically stronger one. The new second or third editions of the fifth grade Saxon Math 65 are stronger in academic content then the older first edition of the sixth grade Math 76 book. Moving from the former to the latter is like skipping a book and going from a fifth grade to a seventh grade textbook. Again, using the entire selection of John's original first edition math books is okay so long as you do not attempt to go from one of the old editions to a newer edition. If you must do this, please email or call me for assistance before you make the change.
"But the lesson was easy and I wanted to finish the book early, so I skipped the easy lesson. That shouldn't make any difference." Or, "There are two of each type of problem, so why do all thirty problems? Just doing the odd numbered ones is okay because the answers for them are in the back of the book." Well, let's apply that logic to your music lessons.
We will just play every other musical note when there are two of the same notes in a row. After all, when we practice, we already know the notes we're skipping. Besides, it makes the piano practice go faster. Or an even better idea. When you have to play a piece of music, why not skip the middle two sheets of music because you already know how they sound and the audience has heard them before anyway.
My standard reply to these questions is
Doing daily work is like taking an open book test with unlimited time. The daily assignment grades reflect short term memory. However, answering twenty test questions - which came from among the 120 - 150 daily problems the students worked on in the past four or five days - reflects what students have mastered and placed in long term memory. John Saxon's math books are the only curriculum on the market today that I am aware of that require a test every four or five lessons. Grading the homework and skipping the tests negates the system of mastery, for the student is then no longer held accountable for mastering the concepts.
In March of 1993, in the preface to his first edition Physics textbook, John wrote about
If you use the books as John Saxon intended them to be used, you will join the multitude of other successful Saxon users who value his math books. I realize that every child is different. And while the above situations apply to about 99% of all students, there are always exceptions that justify the rule. If your particular situation does not fit neatly into the above descriptions, please feel free to email me at art.reed@thesaxonteacher.com or call me at
| |||||||||||||

Home | Review the book | Purchase book | Testimonials | Newsletter | Contact Us © 2007 - 2024 AJ Publishers, LLC | Website Design |